253 research outputs found

    Ellenberg-type indicator values for European vascular plant species

    Get PDF
    Aims: Ellenberg-type indicator values are expert-based rankings of plant species according to their ecological optima on main environmental gradients. Here we extend the indicator-value system proposed by Heinz Ellenberg and co-authors for Central Europe by incorporating other systems of Ellenberg-type indicator values (i.e., those using scales compatible with Ellenberg values) developed for other European regions. Our aim is to create a harmonized data set of Ellenberg-type indicator values applicable at the European scale. Methods: We collected European data sets of indicator values for vascular plants and selected 13 data sets that used the nine-, ten- or twelve-degree scales defined by Ellenberg for light, temperature, moisture, reaction, nutrients and salinity. We compared these values with the original Ellenberg values and used those that showed consistent trends in regression slope and coefficient of determination. We calculated the average value for each combination of species and indicator values from these data sets. Based on species’ co-occurrences in European vegetation plots, we also calculated new values for species that were not assigned an indicator value. Results: We provide a new data set of Ellenberg-type indicator values for 8908 European vascular plant species (8168 for light, 7400 for temperature, 8030 for moisture, 7282 for reaction, 7193 for nutrients, and 7507 for salinity), of which 398 species have been newly assigned to at least one indicator value. Conclusions: The newly introduced indicator values are compatible with the original Ellenberg values. They can be used for large-scale studies of the European flora and vegetation or for gap-filling in regional data sets. The European indicator values and the original and taxonomically harmonized regional data sets of Ellenberg-type indicator values are available in the Supporting Information and the Zenodo repository

    Track-based alignment for the BESIII CGEM detector in the cosmic-ray test

    Full text link
    The Beijing Electron Spectrometer III (BESIII) is a multipurpose detector operating on the Beijing Electron Positron Collider II (BEPCII). After more than ten year's operation, the efficiency of the inner layers of the Main Drift Chamber (MDC) decreased significantly. To solve this issue, the BESIII collaboration is planning to replace the inner part of the MDC with three layers of Cylindrical triple-Gas Electron Multipliers (CGEM). The new features of the CGEM detector will improve the spatial resolution to 130 μ\mum. To meet this goal, a careful calibration of the detector is necessary to fully exploit the potential of the CGEM detector. In all the calibrations, the detector alignment plays an important role to improve the detector precision. The track-based alignment for the CGEM detector with the Millepede algorithm is implemented to reduce the uncertainties of the hit position measurement. Using the cosmic-ray data taken in 2020 with the two layers setup, the displacement of the outer layer with respect to the inner layer is determined by a simultaneous fit applied to more than 160000 tracks. A good alignment precision has been achieved that guarantees the design request could be satisfied in the future. A further alignment will be performed using the combined information of tracks from cosmic-ray and collisions after the CGEM is installed into the BESIII detector

    Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade

    Get PDF
    The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. The SSA provides both full readout of the strip hit information when triggered, and, together with the MPA, correlated clusters called stubs from the two sensors for use by the CMS Level-1 (L1) trigger system. Results from the first prototype module consisting of a sensor and two SSA chips are presented. The prototype module has been characterized at the Fermilab Test Beam Facility using a 120 GeV proton beam

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    Get PDF
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×1034^{34} cm2^{-2}s1^{-1}. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker

    Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC

    Get PDF
    The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. Three different analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue front-ends presented strong points, but also limitations. The Differential front-end demonstrated very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the dead time. The Synchronous front-end showed very good timing performance, but also higher noise. For the Linear front-end all of the parameters were within specification, although this design had the largest time walk. This limitation was addressed and mitigated in an improved design. The analysis of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker operation requirements led to the selection of the improved design Linear front-end for integration in the final CMS readout chip

    The CMS Phase-1 pixel detector upgrade

    Get PDF
    The CMS detector at the CERN LHC features a silicon pixel detector as its innermost subdetector. The original CMS pixel detector has been replaced with an upgraded pixel system (CMS Phase-1 pixel detector) in the extended year-end technical stop of the LHC in 2016/2017. The upgraded CMS pixel detector is designed to cope with the higher instantaneous luminosities that have been achieved by the LHC after the upgrades to the accelerator during the first long shutdown in 2013–2014. Compared to the original pixel detector, the upgraded detector has a better tracking performance and lower mass with four barrel layers and three endcap disks on each side to provide hit coverage up to an absolute value of pseudorapidity of 2.5. This paper describes the design and construction of the CMS Phase-1 pixel detector as well as its performance from commissioning to early operation in collision data-taking.Peer reviewe

    Measurement of the absolute branching fraction of the inclusive decay Ds+π+π+πXD_s^+\to \pi^+\pi^+\pi^- X

    Get PDF
    Using an e+ee^+ e^- collision data sample with a total integrated luminosity of 3.193.19 fb1^{-1} collected with the BESIII detector at a center-of-mass energy of 4.178 GeV, the branching fraction of the inclusive decay of the Ds+D_s^+ meson to final states including at least three charged pions is measured for the first time to be B(Ds+π+π+πX)=(32.81±0.35stat±0.82syst)%{\cal B}(D_s^+\to\pi^+ \pi^+ \pi^- X) = (32.81 \pm 0.35_{\rm stat} \pm {0.82_{\rm syst}})\%. In this measurement the charged pions from KS0K_S^0 meson decays are excluded. The partial branching fractions of Ds+π+π+πXD_s^+\to\pi^+ \pi^+ \pi^- X are also measured as a function of the π+π+π\pi^+ \pi^+ \pi^- invariant mass.Comment: 13 pages, 4 figure

    Helicity amplitude analysis of χcJϕϕ\chi_{cJ} \rightarrow \phi\phi

    Full text link
    Using (447.9 ±\pm 2.3) million ψ\psi(3686) events collected with the BESIII detector, the decays of χcJϕϕ\chi_{cJ} \rightarrow \phi\phi (JJ=0, 1, 2) have been studied via the decay ψ(3686)γχcJ\psi(3686)\rightarrow\gamma\chi_{cJ}. The branching fractions of the decays χcJϕϕ\chi_{cJ} \rightarrow \phi\phi (JJ=0, 1, 2) are determined to be (8.48±0.26±0.27)×104(8.48\pm0.26\pm0.27)\times10^{-4}, (4.36±0.13±0.18)×104(4.36\pm0.13\pm0.18)\times10^{-4}, and (13.36±0.29±0.49)×104(13.36\pm0.29\pm0.49)\times10^{-4}, respectively, which are the most precise measurements to date. From a helicity amplitude analysis of the process ψ(3686)γχcJ,χcJϕϕ,ϕK+K\psi(3686) \rightarrow \gamma \chi_{cJ}, \chi_{cJ}\rightarrow \phi\phi, \phi\rightarrow K^{+}K^{-}, the polarization parameters of the χcJϕϕ\chi_{cJ} \rightarrow \phi\phi decays are determined for the first time.Comment: 23 pages, 5 figure
    corecore